

- $+5 \mathrm{~V} /+3.3 \mathrm{~V}$ Input Voltage
- Negative Output
- Remote Sense
- Adjustable Output Voltage
- 23-pin SIP Package

The PT6900 is a series of highperformance ISRs, that provide plus to minus voltage conversion, up to 12 watt in a 23 -pin SIP package.

The PT6900 is designed to supply regulated negative voltages for powering the latest ECL (-5.2 V) and GaAs (-2.0 V) ICs used in high-speed fiber optic communications. A $330 \mu \mathrm{~F}$ electrolytic capacitor is required on the input and output for proper operation.

Please note that this product is not short-circuit protected.

Standard Application

$C_{\text {in }}=$ Required $330 \mu \mathrm{~F}$ electrolytic
$\mathrm{C}_{\text {out }}=$ Required $330 \mu \mathrm{~F}$ electrolytic

Pin-Out Information

Pin	Function
1	Do not connect
2	$\mathrm{~V}_{\text {out }}$ Adjust
3	$\mathrm{~V}_{\text {in }}$
4	$\mathrm{~V}_{\text {in }}$
5	$\mathrm{~V}_{\text {in }}$
6	$\mathrm{~V}_{\text {in }}$
7	$\mathrm{~V}_{\text {in }}$
8	Remote Sense GND
9	GND
10	GND
11	GND
12	GND

Ordering Information
+5 V Input +3.3 V Input $\quad \underline{V_{\text {out }}}$
PT 6901D PT 6904D $=-2.0 \mathrm{~V}$
PT 6902 PT 6905D $=-5.2 \mathrm{~V}$ PT 6903口 $=-1.5 \mathrm{~V}$

PT Series Suffix (PT1234X)

C ase/Pin

Configuration
Vertical Through-Hole N
Horizontal Through-Hole A
Horizontal Surface Mount C
(For dimensions and PC board layout, see Package Styles 1100 and 1110 .)

Specifications

Notes: (1) ISR-will operate down to no load with reduced specifications.
(2) See SOA curves or contact the factory for the approrpiate derating.

12 W att 5V/3.3V Input
Plus to Minus Voltage Converter

Note A: All data listed in the above graphs has been developed from actual products tested at $25^{\circ} C$. This data is considered typical data for the DC-DC Converter.
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer's maximum operating temperatures

Adjusting the Output Voltage of the PT6900/PT6910 Positive to Negative Converter Series

The negative output voltage of the Power Trends PT6900 Series ISRs may be adjusted higher or lower than the factory trimmed pre-set voltage with the addition of a single external resistor. Table 1 gives the allowable adjustment range for each model in the series as $V_{a}(\min)$ and $V_{a}(\max)$.
Adjust Up: An increase in the output voltage is obtained by adding a resistor R2, between pin $2\left(\mathrm{~V}_{\mathrm{o}}\right.$ adjust) and pin 8 (Remote Sense GND).

Adjust Down: Add a resistor (R1), between pin $2\left(\mathrm{~V}_{\mathrm{o}}\right.$ adjust) and pin 22 (Remote Sense V_{o}).

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor, either (R1) or R2 as appropriate.

Notes:

1. Only a single 1% resistor is required in either the (R1) or R2 location. Do not use (R1) and R2 simultaneously. Place the resistor as close to the ISR as possible.
2. Never connect capacitors from V_{o} adjust to either GND, $\mathrm{V}_{\text {out }}$, or the Sense pins. Any capacitance added to the V_{o} adjust pin will affect the stability of the ISR.
3. If the sense pins are not being used, the resistors (R1) and R2 can be connected to $V_{\text {out }}$ and GND respectively.
4. An increase in the output voltage must be accompanied by a corresponding reduction in the maximum output current. The revised maximum output current must be reduced to the equivalent of 12 W atts.

$$
\text { i.e. } \quad I_{o u t}(\max)=\frac{12}{V_{a}} \text { Adc, }
$$

where V_{a} is the adjusted output voltage.

Figure 1

The respective values of (R1) [adjust down], and R2 [adjust up], can also be calculated using the following formulas.

$$
\begin{aligned}
& \text { (R1) }=\frac{24.9\left(V_{\mathrm{a}}-\mathrm{V}_{\mathrm{r}}\right)}{\left(\mathrm{V}_{\mathrm{o}}-\mathrm{V}_{\mathrm{a}}\right)}-\mathrm{R}_{\mathrm{s}} \mathrm{k} \Omega \\
& \text { R2 }=\frac{24.9 \mathrm{~V}_{\mathrm{r}}}{\left(\mathrm{~V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{o}}\right)}-R_{\mathrm{s}} \quad \mathrm{k} \Omega
\end{aligned}
$$

Where:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{o}} & =\text { Original output voltage } \\
\mathrm{V}_{\mathrm{a}} & =\text { Adjusted output voltage } \\
\mathrm{V}_{\mathrm{r}} & =\text { Reference voltage in Table } 1 \\
\mathrm{R}_{\mathrm{s}} & =\text { The resistance given in Table } 1
\end{aligned}
$$

PT6900/PT6910 ADJUSTMENT RANGE AND FORMULA PARAMETERS			
Series Pt \#			
5.0V Bus	PT6903/13	PT6901/11	PT6902/12
3.3 V Bus		PT6904/14	PT6905/15
V_{0} (nom)	-1.5V	-2.0V	-5.2V
$\mathrm{Va}_{\mathrm{a}}(\mathrm{min})$	-1.2V	-1.4V	-2.7V
$\mathrm{Va}_{\mathrm{a}}(\max)$	-3.4V	$-4.5 \mathrm{~V}$	-6.5V
Vr	-1.0V	$-1.0 \mathrm{~V}$	-0.92V
R $\mathrm{R}^{(k \boldsymbol{\Omega})}$	12.7	10.0	17.4

Application Notes coninued

PT6900/6910 Series

Table 2

PT6900/PT6910 ADJUSTMENT RESISTOR VALUES							
Series Pt \#				Series Pt \#			
5.0V Bus	PT6903/13	PT6901/11	PT6902/12	5.0 V Bus	PT6903/13	PT6901/11	PT6902/12
3.3V Bus		PT6904/14	PT6905/15	3.3 V Bus		PT6904/14	PT6905/15
V_{0} (nom)	-1.5Vdc	$-2.0 \mathrm{Vdc}$	$-5.2 \mathrm{Vdc}$	V_{0} (nom)	-1.5Vdc	-2.0Vdc	-5.2Vdc
V_{a} (req'd)				$\mathrm{V}_{\mathrm{a}}($ req'd)			
-1.2	(3.9) $\mathrm{k} \Omega$			-3.9		$3.1 \mathrm{k} \Omega$	(39.7) $\mathrm{k} \Omega$
-1.3	(24.7) $\mathrm{k} \Omega$			-4.0		$2.5 \mathrm{k} \Omega$	(46.5) $\mathrm{k} \Omega$
-1.4	(86.9) $\mathrm{k} \Omega$	(6.0) $\mathrm{k} \Omega$		-4.1		$1.9 \mathrm{k} \Omega$	(54.0) $\mathrm{k} \Omega$
-1.5		(14.9)k Ω		-4.2		$1.3 \mathrm{k} \Omega$	(64.3) $\mathrm{k} \Omega$
-1.6	$236.0 \mathrm{k} \Omega$	(27.4) $\mathrm{\Omega} \Omega$		-4.3		$0.8 \mathrm{k} \Omega$	(76.1) $\mathrm{k} \Omega$
-1.7	$112.0 \mathrm{k} \Omega$	(48.1) $\mathrm{k} \Omega$		-4.4		$0.4 \mathrm{k} \Omega$	(90.9) $\mathrm{k} \Omega$
-1.8	$70.3 \mathrm{k} \Omega$	(89.6) $\mathrm{K} \Omega$		-4.5		$0.0 \mathrm{k} \Omega$	(106.0) $\mathrm{k} \Omega$
-1.9	49.6k Ω	(214.0) $\mathrm{k} \Omega$		-4.6			(135.0) $\mathrm{k} \Omega$
-2.0	37.1k Ω			-4.7			(171.0) $\mathrm{k} \Omega$
-2.1	$28.8 \mathrm{k} \Omega$	239.0k Ω		-4.8			(224.0) $\mathrm{k} \Omega$
-2.2	22.9k Ω	115.0k Ω		-4.9			(313.0) $\mathrm{k} \Omega$
-2.3	$18.4 \mathrm{k} \Omega$	$73.0 \mathrm{k} \Omega$		-5.0			(491.0) $\mathrm{k} \Omega$
-2.4	$15.0 \mathrm{k} \Omega$	52.3k Ω		-5.1			(1020.0) $\mathrm{k} \Omega$
-2.5	$12.2 \mathrm{k} \Omega$	39.8k Ω		-5.2			
-2.6	9.9k Ω	$31.5 \mathrm{k} \Omega$		-5.3			$212.0 \mathrm{k} \Omega$
-2.7	8.1k Ω	25.6k Ω	(0.3) $\mathrm{k} \Omega$	-5.4			97.1k Ω
-2.8	$6.5 \mathrm{k} \Omega$	$21.1 \mathrm{k} \Omega$	(2.1) $\mathrm{k} \Omega$	-5.5			$59.0 \mathrm{k} \Omega$
-2.9	5.1k Ω	$17.7 \mathrm{k} \Omega$	(4.0) $\mathrm{k} \Omega$	-5.6			39.9k Ω
-3.0	3.9k Ω	$14.9 \mathrm{k} \Omega$	(6.1) $\mathrm{k} \Omega$	-5.7			$28.4 \mathrm{k} \Omega$
-3.1	$2.9 \mathrm{k} \Omega$	$12.6 \mathrm{k} \Omega$	(8.5) $\mathrm{k} \Omega$	-5.8			20.8k Ω
-3.2	$2.0 \mathrm{k} \Omega$	10.8k Ω	(11.0) $\mathrm{k} \Omega$	-5.9			$15.3 \mathrm{k} \Omega$
-3.3	$1.1 \mathrm{k} \Omega$	$9.2 \mathrm{k} \Omega$	(13.8) $\mathrm{k} \Omega$	-6.0			$11.2 \mathrm{k} \Omega$
-3.4	$0.4 \mathrm{k} \Omega$	$7.8 \mathrm{k} \Omega$	$(16.9) \mathrm{k} \Omega$	-6.1			$8.1 \mathrm{k} \Omega$
-3.5		6.6k Ω	(20.4) $\mathrm{\Omega}$	-6.2			$5.5 \mathrm{k} \Omega$
-3.6		$5.6 \mathrm{k} \Omega$	(24.3) $\mathrm{k} \Omega$	-6.3			$3.4 \mathrm{k} \Omega$
-3.7		$4.7 \mathrm{k} \Omega$	(28.7) $\mathrm{k} \Omega$	-6.4			$1.7 \mathrm{k} \Omega$
-3.8		$3.8 \mathrm{k} \Omega$	(33.8) $\mathrm{k} \Omega$	-6.5			$0.2 \mathrm{k} \Omega$

[^0]
[^0]: R1 = (Blue)
 R2 = Black

